Real-time prediction of visibility related crashes
نویسندگان
چکیده
More researchers started using real-time traffic surveillance data, collected from loop/radar detectors (LDs), for proactive crash risk assessment. However, there is a lack of prior studies that investigated the link between real-time traffic data and crash risk of reduced visibility related (VR) crashes. Two issues that have not explicitly been addressed in prior studies are; (1) the possibility of predicting VR crashes using traffic data collected from the Automatic Vehicle Identification (AVI) sensors installed on Expressways and (2) which traffic data are advantageous for predicting VR crashes; LDs or AVIs. Thus, this study attempts to examine the relationships between VR crash risk and real-time traffic data collected from LDs installed on two Freeways in Central Florida (I-4 and I-95) and from AVI sensors installed on two Expressways (SR 408 and SR 417). Also, it investigates which data are better for predicting VR crashes. The approach adopted here involves developing Bayesian matched casecontrol logistic regression models using the historical crashes, LDs and AVI data. Regarding the model estimated based on LDs data, the average speed observed at the nearest downstream station along with the coefficient of variation in speed observed at the nearest upstream station, all at 5–10 min prior to the crash time, were found to have significant effect on VR crash risk. However, for the model developed based on AVI data, the coefficient of variation in speed observed at the crash segment, at 5–10 min prior to the crash time, affected the likelihood of VR crash occurrence. The results showed that both LDs and AVI systems can be used for safety application (i.e., predicting VR crashes). It was found that up to 73% of VR crashes could be identified correctly. Argument concerning which traffic data (LDs or AVI) are better for predicting VR crashes is also provided and discussed. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Estimation Model of Two-Lane Rural Roads Safety Index According to Characteristics of the Road and Drivers’ Behavior
Vehicle crashes are amongst the major causes of mortality and results in losses of lives and properties. A large number of the vehicle crashes occur on rural roads. Accidents become more noteworthy in two-lane roads due to going and coming traffic. Therefore, prediction of crashes and their causes are considerably important to reduce the number and severity of the accidents. The safety index is...
متن کاملارائه الگوئی برای پیشبینی روند مرگ ناشی از سوانح ترافیکی در ایران
Abstract Background: There is no reliable prediction model on the rate of mortality due to road traffic accidents in Iran. The present study aimed to predict deaths from road traffic crashes in Iran. Materials and methods: All death records from traffic accidents in Iran between March 2004 and March 2011 were analyzed. The Box-Jenkins time series model was used for obtaining trends. Death f...
متن کاملA Framework for Real-time Crash Prediction: Statistical Approach Versus
The attempts to predict crashes on freeways through statistical modeling involving capacity driven measures of traffic flow (e.g., AADT) and road geometry have spanned for more than two decades. However, success in crash prediction involving these static data has so far been limited. In recent times, some researchers made efforts to accommodate the weather conditions and seasonal effects to bet...
متن کاملDevelopment of Models for Crash Prediction and Collision Estimation- A Case Study for Hyderabad City
Road traffic crash is a cause of unnatural death and occupies fifth position in the world as per WHO records. Road crashes in India are alarming in situation while road safety is professionally lacking and politically missing. Hyderabad city, the capital of newly formed Telangana State occupies sixth position in occurrence of road crashes. An attempt is made to understan...
متن کاملPlanning Level Regression Models for Prediction of the Number of Crashes on Urban Arterials in Bangladesh
In most of the developing countries, the metropolitan organizations do not assess the safety consequences of alternative transportation systems and one of the reasons is the lack of suitable methodology. The goal of this paper is to develop practical tools for assessing safety consequences of arterial roads in the context of long-term urban transportation plans in Dhaka city, the capital of Ban...
متن کامل